
Forecasting Dengue Cases using Hybrid GARCH Model

S.R. Krishna Priya1, N. Naranammal2 and S. Sneha3

1,2,3Department of Statistics, PSG College of Arts & Science, Coimbatore

To cite this article

S.R. Krishna Priya, N. Naranammal & S. Sneha (2023). Forecasting Dengue Cases using Hybrid GARCH Model.
Journal of Agriculture, Biology and Applied Statistics. Vol. 3, No. 1, pp. 1-9. https://DOI:10.47509/
JABAS.2023.v03i01.01

Abstract: The Dengue incidence has increased over the past ten years in India. Almost half of the world’s
population, about 4 billion people, live in areas with a risk of Dengue. So, forecasting the Dengue cases will
help to take preventive measures to overcome the disease. In this study Dengue cases of India has been
forecast using ARIMA and ARIMA-GARCH model. Annual data from year 1996 to 2023 has been used to
develop the model. Goodness of fit measures has been used to compare the traditional ARIMA and hybrid
ARIMA-GARCH model. From the results, ARIMA (1,1,1)-GARCH (1,1) outperformed the ARIMA (1,1,1)
model.
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1. Introduction

Dengue viruses are spread to people through the bite of an infected Aedes species mosquito.
It is a vector-borne disease that is major public health threat globally. Dengue virus was
isolated in Japan in 1943, the first epidemic of clinical dengue-like illness was recorded in
Chennao in 1790 (Gupta et al., 2012). It is estimated that 50 to 500 million people worldwide
are infected with Dengue. Every year nearly 10000 to 20000 people are facing death worldwide
due to Dengue (Othman et al., 2022). Many researchers have performed the analysis on
dengue incidence for many regions (Hsu et al., 2017; Choudhury et al., 2008; Patsaraporn
and Somboonsak, 2019).

Previously, studies have been carried out using ARIMA and GARCH model in traffic
modelling (Sun et al., 2006), oil price fluctuation (Xiang, 2022), agricultural price forecasting
(Bhardwaj et al., 2014).

This paper is an attempt to forecast Dengue cases in India using ARIMA and ARIMA-
GARCH models.
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2. Materials and Methods

2.1. Data Description

The data used for this study is annual data of Dengue cases in India from 1996 to 2023. Data
has been collected from website India stat. To analyse and forecast the dengue cases ARIMA
and ARIMA-GARCH model have been used.

2.2. Stationarity Test

Unit root test, tests whether the time series data is stationary or not. The hypothesis for the
unit root test is given as follows;

H
0
: The time series data is non stationary
H

1
: The time series data is stationary

The most commonly used unit root test is Augmented Dickey Fuller (ADF) test.

2.3. ARIMA Model

The ARIMA (auto regressive integrated moving average) model is a time series forecasting
method that combines the auto regression (AR), differencing(I), moving average components
(MA). The three main parameters in ARIMA are P (order of auto regression), d (degree of
differencing) and q (order of moving average).

The ARIMA model is quite similar to the ARMA model other than the fact that it
includes one more factor known as Integrated (I) i.e. differencing which stands for I in the
ARIMA model. So, in short ARIMA model is a combination of a number of differences
already applied on the model in order to make it stationary, the number of previous lags
along with residuals errors in order to forecast future values.

2.4. ARCH Model

ARCH is an Autoregressive model with Conditional Heteroskedasticity. The ARCH process
introduced by Engle (1982) explicitly recognizes the difference between the unconditional
and the conditional variance allowing the latter to change over time as a function of past
errors. ARCH model is a statistical model used to analyze volatility. The components of
ARCH model are,

• Autoregressive: The current value can be expressed as a function of the previous
values i.e. they are correlated

• Conditional: This informs that the variance is based on past errors.

• Heteroskedasticity: This implies the series displays unusual variance (Kumar, 2020).

The ARCH effect is caused by autocorrelation of heteroskedasticity observed over
different periods of time. It means volatility is present in the data.

The mean equation of ARCH model is given by,
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The variance equation of ARCH model is given by,

Var (u) = 2 2 2
0 1 1t t p t pu u� � � �� �� � � �� (2)

2.5. GARCH Model

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is an extension of the
ARCH model that incorporates a moving average component together with
the autoregressive component. Bollerslev (1986) generalized the ARCH model and
introduced the GARCH model. GARCH is the ARMA equivalent of ARCH, which only has
an autoregressive component. GARCH models permit a wider range of behavior more
persistent volatility. (Kumar, 2020). The equation is given by

2 2 2
0 1 1

q p
t i t i j t ji j� � � � �� � � �� � � � �� (3)

2.6. Goodness of Fit Measures

Goodness of fit measures is used to evaluate the developed models.

2.6.1. AIC and BIC

AIC= -2log L +2n (6)

BIC= -log L + n log T (7)
where,
L is likelihood function; n is number of hyper parameters and T is the total number of
observations. Less value of AIC and BIC indicates the better model.

2.6.2. Root Mean Squared Error

RMSE =
2
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2.6.3. Mean Squared Error
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2
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2.6.4. Mean Absolute Percent Error
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where,

n - number of observations y
i
 – actual value and ŷi  – predicted value

3. Results and Discussion

The time series plot of the Dengue cases from the year 1996 to 2023 is represented in the
figure 1.

Figure 1: Time Series Plot of Dengue Cases

As the graph indicates that, the minimum number cases recorded is 650 in the year
2000 and the maximum number of cases recorded is 233251 in the year 2022. From the year
1996 to 2023 over all 1553583 cases have been recorded in India.

The above series exhibits the properties of a non-stationary series. Also, it is seen that
there is an upward trend which indicates that our time series data is indeed non-stationary.
To further check its stationarity, unit root test has been used.

3.1. Augmented Dickey Fuller Test

Unit roots are the reason for non-stationarity. A time series data is said to be stationary if a
change in time does not influence the change in the distribution’s form. The statistical power
of these tests is low. The most commonly used test to check the stationarity is Augmented
Dickey Fuller test.

Table 1: Result of Stationarity Test

Data ADF test p-value

Level -2.15 0.22

Differentiated -5.86 <0.01

The Augmented Dickey-Fuller test shows the p-value as 0.2259 which is greater than
0.05. So, the null hypothesis is accepted which indicated that the data is non-stationary.
After differencing one time, p value of ADF test is <0.01 which indicate that the data have
become stationary.
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The figure 2, differentiated plot provides more useful information about the data as
there is the phenomenon of volatility clustering. There is no evidence of a trend, and the
series appears to show a tendency to mean reversion. However, there may be an autocorrelation
in the data.

3.2. Results of ARIMA Model

3.2.1. Correlogram of ARIMA

ACF and PACF plot shows the p and q values in the order of ARIMA model and it is
presented in figure 3.
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Figure 2: Time Series Plot of Dengue Cases after Differencing

Figure 3: Correlogram of ARIMA model
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From the figure 3, the Correlogram shows that there is a spike in the lag 1 of the plots.
So, the best ARIMA model suitable for the data is ARIMA (1,1,1).

The parameter estimates of the ARIMA (1,1,1) model is presented in the Tables 2.

Table 2: Parameter Estimates of ARIMA (1,1,1) Model

Variable Coefficient

C 0.11
AR(1) -0.45
MA(1) -0.06

The equation of ARIMA (1,1,1) model is,

1 10.1145 0.4557 0.4241t t tY y e� �� � � � (11)

3.3. Results of ARCH Effect

To forecast using ARIMA-GARCH model, the presence of ARCH effects has to be done by
checking the residual diagnostics for heteroskedasticity and the results is presented in table 3.

Table 3: Heteroskedasticity test for ARCH effects

Parameter Values

Observed R squared 5.79
Prob.F(1,24) 0.01

Prob.chi.Square(1) 0.01

From the Table 3, the probability of chi-square is <0.05, so it is significant and the
probability of residual is < 0.05 which implies that there is heteroskedasticity in the data. To
obtain the p and q values for GARCH model, correlogram of squared residuals in presented
in figure 4.

Figure 4: Correlogram of Squared Residuals
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From figure 4, one can see the partial correlation graph for the lags. The resulting
values are all significant indicating the presence of ARCH effects. The necessary values are
all significant indicating that ARCH model of lag 1 is enough.

3.4. Result of ARIMA-GARCH Model

Having identified the ARIMA (1,1,1) as the better model, now ARIMA-GARCH model has to
be estimated. To find out the best ARIMA-GARCH model, different combination of ARIMA-
GARCH model have been proposed and AIC and BIC values are presented in table 4.

Table 4: AIC and BIC of different ARIMA-GARCH Models

Models AIC BIC

ARIMA (1,1,1)- GARCH (1,1) 2.41 2.71

ARIMA (1,1,1)- GARCH (1,2) 2.58 2.91

ARIMA (1,1,1)- GARCH (1,3) 2.67 3.05

ARIMA (1,1,1)- GARCH (2,1) 2.61 2.94

ARIMA (1,1,1)- GARCH (2,2) 2.76 2.87

ARIMA (1,1,1)- GARCH (2,3) 2.79 3.22

ARIMA (1,1,1)- GARCH (3,1) 2.70 3.09

ARIMA (1,1,1)- GARCH (3,2) 2.75 3.19

ARIMA (1,1,1)- GARCH (3,3) 2.83 3.31

From table 4, comparing the AIC and BIC values of the different models, ARIMA
(1,1,1)-GARCH (1,1,) has the lowest AIC, BIC values which indicated that the ARIMA
(1,1,1)-GARCH (1,1) is the best model for forecasting Dengue cases.

Table 5: Estimate values of ARIMA (1,1,1)-GARCH (1,1)

Mean Equation

Parameter Coefficient Standard Error P-Value

Constant 0.2211 0.035458 0.0000

Ar (1) 0.01508 0.275183 0.9563

Ma (1) -0.91138 0.144398 0.0000

Variance Equation

�0 -0.025931 0.308223 0.9330

�1 0.424069 9.255408 0.9635

The equation of ARIMA (1,1,1)-GARCH (1,1) model is,

2 2 2
1 10.2754 0.0259 0.4241t t t� �� �� � �� (12)
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3.5. Goodness of Fit Measures of the ARIMA and ARIMA-GARCH Model

Table 6: Goodness of Fit Measures of the Proposed Models

Model AIC BIC RMSE MAE MAPE

ARIMA (1,1,1) 2.89 3.08 0.94 0.79 119.93

ARIMA (1,1,1)-GARCH (1,1) 2.41 2.71 0.82 0.67 94.41

From the table 6, it is clear that ARIMA (1,1,1)-GARCH (1,1) performed better than
ARIMA (1,1,1) for forecasting Dengue cases of India.

5. Conclusion

Forecasting Dengue cases improves the understanding of the risk associated with this disease
and it provides accurate predictions for better public health planning and resource allocation.
In the present study, ARIMA and ARIMA-GARCH models have been developed for
forecasting dengue incidence. When comparing various combination of ARIMA-GARCH
models, ARIMA (1,1,1)-GARCH (1,1) had lower AIC and BIC values indicates that the
model performs better than other models. Based on the goodness of fit measure the ARIMA-
GARCH model outperforms the traditional ARIMA model. ARIMA (1,1,1)-GARCH (1,1)
provides valuable insights into the dynamics of dengue outbreak allowing for better
preparedness and allocation of resources for prevention and control efforts.
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